
Faster State Manipulation in General Games using Generated Code

Kevin Waugh
waugh@cs.ualberta.ca

Department of Computing Science
University of Alberta

Edmonton, AB Canada T6G 2E8

Abstract
Many programs for playing games rely on some
type of state space search to choose their actions.
It is well known that there is a correlation between
the depth to which these programs search and the
strength of their play. Unfortunately when play-
ing games in the general game-playing competi-
tion, manipulating states requires expensive logical
inference and as a result, programs that play these
games cannot examine many states before they are
required to act. Typically, these programs make use
of a Prolog package to perform the required logical
inference. These packages are not designed specif-
ically for general game playing. As a result, there
is great potential for improving the strength of play
by designing a specialized package to perform the
state manipulation tasks. In this paper we introduce
gdlcc, a program that takes a general game de-
scription and creates a game specific C++ library
for performing state manipulating tasks. Experi-
mental results show that a program using this li-
brary, as opposed to a Prolog package, can examine
between 60% and 1760% more states per action.

1 Introduction
Most strong computer game playing programs are specifically
designed and tuned to play only a single game. For exam-
ple, Chinook [Schaeffer et al., 1992], the world’s strongest
Checkers playing program, can crush all human players, but
it does not have the ability to play Chess despite the similar-
ities between the two games. Both these games are played
on an eight by eight board that is occupied by pieces. Pieces
move across the board and can capture the opponent’s pieces.
These concepts are all programmed into Chinook, but, unlike
a human, the program cannot use its knowledge of these con-
cepts to adapt to a different game. The General Game Playing
Competition [Genesereth et al., 2005], which has been run
at AAAI since 2005, is an attempt to spur Artificial Intelli-
gence research into solving these types of problems. Com-
petitors write programs that can play any game that can be
described in the Game Description Language (GDL) [Love
et al., 2008]. Since GDL can describe both Chess and Check-
ers, a general game playing program can not only play both

games, but can potentially use its knowledge and past experi-
ences from one game to its advantage when playing the other.

Strong game-playing programs aim to maximize their re-
ward in the presence of one or more adversaries. Often these
programs attempt to model the play of their opponents in or-
der to exploit their weaknesses. That is, how the opponent
will play is often unknown and a program must reason and act
under this uncertainty. This problem is still present in general
games, but many additional problems arise under this new
framework. One important problem is how to represent the
game in memory. Much of the strength of strong computer
players comes from the speed and efficiency afforded by cus-
tom data structures. In general games we do not have this
luxury available to us. Having a program determine a smart
way of representing an arbitrary game and relating this rep-
resentation to previous games and known concepts is a large
obstacle.

Though these problems appear quite daunting at first, some
progress has been made since the competition’s inception.
Recent competitors are visibly stronger than their predeces-
sors. As some type of search typically underlies most general
game playing programs, much of the recent progress in this
area has been due to searching in a more intelligent fashion.
Since search is typically guided using a heuristic function, a
more informed heuristic can focus the search on more impor-
tant areas of the state space. For this reason, evaluating the
effectiveness of different heuristics can be useful for increas-
ing the strength of a program [Clune, 2007]. Similarly, auto-
matically extracting features and heuristics has also proven to
be useful [Utgoff, 2001; Kuhlmann et al., 2006; Schiffel and
Thielscher, 2007a; Kaiser, 2007]. Other work on transferring
heuristic knowledge from one game to another has also shown
promise [Banerjee et al., 2006; Banerjee and Stone, 2007;
Taylor et al., 2007; Kuhlmann and Stone, 2007].

Though the strength of entrants to the competition is in-
creasing due to these advancements, the play is still far from
world class. This is unlikely to change in the near future as
progress will continue to be made in small steps as opposed
to giant leaps. This slow progression has an unfortunate side
effect as one research goal from year to year is merely to win
the competition. Surely, steps towards the ultimate goal of
strong general intelligence would help a program’s chance
of winning, but it is not necessarily the case that strength-
ening the field of competitors yearly means that we are in-

deed moving towards improved general intelligence. Indeed,
in this paper we present an enhancement that can be used by
any general game playing program to strengthen its play, but
this enhancement does not provide us with any new insight
towards solving the larger problems in Artificial Intelligence.

As the successful general game playing programs rely on
search, we can take advantage of the well known correlation
between the strength of play and the amount of the state space
that is examined per turn. That is, without altering the under-
lying heuristic, increasing the amount of the state space ex-
amined each turn will likely improve the quality of play of a
program. Unfortunately as a side effect of the flexibility that
GDL affords us, state manipulation in GDL is extremely slow
as it requires expensive logical inference. Most competitors
make use of one of the various generic Prolog packages to
perform this inference. These packages are not tailored in
any way towards the specific game being played and often
come with additional capabilities that are not needed by the
players. In this paper we introduce gdlcc, a C++ program
that creates a custom C++ library from a general game de-
scription. This library replaces the need for a bulky Prolog
package as it has a common interface for performing state
manipulation tasks. Before delving into the workings of our
system, we will briefly overview the past competitions. We
will then expand on the state manipulation tasks that require
logical inference. After, we will describe how gdlcc pro-
gramatically generates C++ code to perform these tasks and
some minor optimizations that it uses during this process. Fi-
nally, we will show experimental results contrasting gdlcc
to YAP [CRACS and LIACC, 2008], a Prolog package, in
terms of their abilities to perform state manipulation tasks.

2 Background
The winner of the first General Game Playing Competition
was Cluneplayer [Clune, 2007]. Cluneplayer attempts to cre-
ate an accurate heuristic function by automatically identify-
ing features for a particular game from a base set of features
common in many games. For example, the concept of pieces
and mobility are known to Cluneplayer and it attempts to re-
late these concepts to the logical description of the game to
automatically create a set of potential features. Using these
potential features, Cluneplayer creates and evaluates many
different heuristic functions to find one of suitable quality.
This heuristic is then used during play in conjunction with
an Alpha-Beta search. The winner of the second competi-
tion, Fluxplayer [Schiffel and Thielscher, 2007b], employ-
ees a similar tactic of automatically constructing and eval-
uating a heuristic function. In 2007 and 2008, CADIA-
Player [Finnsson, 2007] won the competition using a differ-
ent approach. Instead of identifying a heuristic function, it
employes a Monte Carlo simulation-based evaluation func-
tion in conjunction with the UCT algorithm [Finnsson and
Björnsson, 2008; Kocsis and Szepesvári, 2006]. Recently,
this approach has been quite successful in computer Go. The
beauty of this approach is that UCT guides the search in the
proper direction given that enough simulations can be done to
make the evaluation function accurate.

With the success of CADIA-Player, many other teams have

incorperated using simulations in their evaluation functions.
More specifically, one simulation refers to playing out the re-
mainder of the game using some set policy (such as, all moves
chosen randomly) and the terminal value is taken to be the
state’s value. In this framework, there are two fundamen-
tal ways to improve the quality of a simulation-based player.
First, one can simply do more simulations to get a better es-
timation of the true underlying value of a state. Second, one
can use heuristics to improve the policy used during the sim-
ulations [Sharma et al., 2008]. Here, the simulation policy is
more intelligent or informed. For example, the history heuris-
tic will give preference in the simulation to moves that have
shown more success in the past [Schaeffer, 1983].

With the simulation-based approaches, it is perhaps even
more important that the state manipulation tasks be done
quickly, as the evaluation function itself might be required
to perform many further state manipulations. Specifically,
the state manipulation tasks that require logical inference are:
evaluating whether or not the game is over and evaluating the
utility of each player in the case that it is, evaluating which
actions are legal for each player from a state, and computing
a successor state given the joint actions of all players. Each of
these tasks are computed using simple logical inference given
the rules described in GDL. The advantage to using Prolog
for this inference is that it is relatively simple to construct a
player in this fashion. The translation from GDL to Prolog
is straightforward. Also, many of the powerful Prolog en-
gines have bindings into the most popular languages, which
allows for the engine to be easily embedded inside another
program. These Prolog packages do many optimizations be-
hind the scenes to make the logical inference as efficient as
possible. In fact, some compile the inference rules into an
efficient bytecode representation. Despite these extra opti-
mizations, using one of these packages will cause a general
game playing program to inherit a lot of unneeded overhead
as the machinery provided by Prolog is much more sophisti-
cated than we require. For example, a Prolog package may
allow for the logical inference rules to be created, modified
or removed. In a general game, these logical inference rules
are fixed over the duration of play. Also, a Prolog package
can allow for many different queries. In a general game, only
four top-level queries are ever performed and the subqueries
that they depend on are again fixed. Furthermore, Prolog also
has additional operators and functions that are not present in
GDL, such as the cut operator, console print statements, or
math operators and functions like sin or cos.

3 System Description
To overcome the unnecessary overhead of Prolog, we can
instead resort to a custom solution for our logical inference
needs. Creating a GDL interpreter of sorts would be far
slower than using a Prolog package, but generating code that
can be compiled into machine code is certainly feasible at
first glance. During play, only facts change from state to
state. Since the logical inference rules are not required to
change and the top-level queries do not vary between states,
the query resolution rules can be hard-coded. The way these
rules can be hard-coded is not unique and the performance of

the required inference can be drastically effected by a good or
poor choice in this matter. It is also possible that the best res-
olution path might depend on the actual game state currently
being examined, which would put a hard-coded solution, at a
disadvantage to a smarter dynamic one. Even with these po-
tential issues and room for further improvement, we will start
with a naive hard-coded solution as currently our only goal is
to merely beat a generic Prolog package.

Before engineering our solution, we need a brief under-
standing of how a game’s state is represented. A general game
description is made up of facts and inference rules. Facts are
grounded relations that are known to be true. Inference rules
make use of facts and inference rules to prove the truth of
other relations. The state of a game is simply all relations that
are true given a set of facts. When players make actions, the
facts change and hence the set of relations that are true also
change. For example, a game might have a relation day that
is true in the initial state and the inference rule (<= sunny
day). This would mean that sunny is also true in the ini-
tial state. Relations can also have a fixed number of literal
or functional arguments. For example, if we have (open
door1), then open is the name of a relation with a single
argument, which happens to be the literal door1. We could
also have (cell 1 2 (piece queen)) and (cell 3
4 empty). Here, (piece queen) is a functional argu-
ment named piece with a single argument queen. When
we wish to infer something from a set of relations and infer-
ence rules, we call the process a query. Continuing with our
first example, we could query sunny and the system would
use the inference rules to see that the relation is indeed true in
the initial state. We can also query relations with unknowns
in the place of arguments. Here, we are asking the infer-
ence system to return all substitutions that would make the
relation true. For example, the query (door ?x) would
result in (door open1) and the query (cell ?x ?y
?z) would result in {(cell 1 2 (piece queen)),
(cell 3 4 empty)}. The query (cell 1 ?x ?y) or
(cell ?x ?y (piece ?z)) would only return (cell
1 2 (piece queen)). We call the process of finding all
true substitutions resolution. Resolution is a fairly straight-
forward recursive procedure. First, we can look through any
facts we know about the current relation and check for pos-
sible substitutions that match our current query. Second,
we look through the list of inference rules to find rules that
could imply something that matches our current query. We
recursively resolve the body to find matches. For exam-
ple, if we have the query (unlocked ?x) and the im-
plication rule (<= (unlocked ?x) (open ?x)) we
find that (open door1) matches the body and therefore
(unlocked door1) is also true. The GDL specification
ensures that any valid game can have any query resolved us-
ing this procedure.

For GDL specifically, there are some special relations that
are important for understanding and manipulating the game.
For example, the relation (role ?x) defines all the play-
ers in the game and it cannot be implied by an inference
rule. The inference system that we are creating needs merely
a way of keeping track of the mutable facts and a way to
query these special relations in order to perform its required

tasks. The mutable facts that change between states all have
the form (true ?x). The facts that are true in the ini-
tial state are denoted (init ?x) in the GDL description
and one can find which facts are true in a successor state
by querying the (next ?x) relation. When querying the
(next ?x) relation, one must set the appropriate (does
?role ?action) facts to tell the system how each player
has acted from the state. To evaluate which actions are le-
gal from a state, the system queries the (legal ?role
?action) relation. The terminal relation is true in
states where the game has ended and in those states query-
ing the (goal ?role ?value) relation determines the
reward to each player. We see that only a few queries
are required for an inference system to interact with GDL.
Specifically, our system must be able to query (init ?x),
terminal, (goal ?role ?value), (legal ?role
?action) and (next ?x).

Our system, gdlcc, takes as input a game description and
outputs a C++ source and header file that can be used to per-
form state manipulation tasks. The program works as fol-
lows. First, the game description is converted into a series of
tokens and comments are removed. Second, the tokens are
processed into facts and implications. During this phase, all
literals, functions and relations are assigned a unique identi-
fier. Third, a breadth-first search is performed starting from
the top-level queries to determine all the sub-queries that are
required. Finally, we can generate the code required to do in-
ference. An example of how a query is translated in to C++
is shown in Figure 1.

There are a few easy-to-implement optimizations that
could improve the performance of our system. First, we can
implement simple clause reordering in the implications. That
is, the order in which we resolve the sub-queries in an im-
plication rule can have a large effect on the time it takes to
perform the inference. As a simple heuristic, we order the
clauses by the number of unknowns that need to be resolved.
The goal of this heuristic is to minimize the number of poten-
tial bindings to the unknowns that we are required to search
over.

Second, some sub-queries are invoked multiple times along
different query paths. Here, we are potentially duplicating the
work required to perform the query every subsequent time it
is required. To avoid this, we implement a simple form of
memoization. That is, after performing a query, we remember
its result in case it is required for a later query. Our system al-
lows for memoization to be enabled or disabled, but currently
there is no heuristic for deciding what should or should not be
memoized. Also, we should note that any query that depends
on a (does ?role ?action) relation cannot be memo-
ized since this relation can change each time a successor state
is generated. If we were to memoize results in this case, we
may produce unusual or invalid successor states.

The code generated by gdlcc has a common interface, so
a player program that is designed to work with said interface
can be used to play any game that can be described by GDL.
With this common interface, it is relatively straightforward to
create a basic general game player. For the more complicated
techniques that require further interactions with the game be-
ing played, further modifications to gdlcc may be required

Query: (row ?x a)
Implication: (<= (row ?m ?x) (true (cell ?m 1 ?x)) (true (cell ?m 2 ?x)) (true (cell ?m
3 ?x)))
Generated Code:

v e c t o r <t u p l e <1> > s t a t e : : e v a l u a t e r o w 0 1 (i n t a) c o n s t {
v e c t o r <t u p l e <1> > r e s u l t s ;
v e c t o r <t u p l e <1> > b = e v a l u a t e c e l l 0 1 1 (2 , a) ;
f o r (v e c t o r <t u p l e <1> > : : c o n s t i t e r a t o r c = b . b e g i n () ;

c != b . end () ;
++ c) {
v e c t o r <t u p l e <0> > d = e v a l u a t e c e l l 1 1 1 ((∗ c) [0] , 4 , a) ;
f o r (v e c t o r <t u p l e <0> > : : c o n s t i t e r a t o r e = d . b e g i n () ;

e != d . end () ;
++ e) {
v e c t o r <t u p l e <0> > f = e v a l u a t e c e l l 1 1 1 ((∗ c) [0] , 5 , a) ;
f o r (v e c t o r <t u p l e <0> > : : c o n s t i t e r a t o r g = f . b e g i n () ;

g != f . end () ;
++ g) {
r e s u l t s . p u s h b a c k (t u p l e <1>((∗ c) [0])) ;

}
}

}
s o r t (r e s u l t s . b e g i n () , r e s u l t s . end ()) ;
r e s u l t s . e r a s e (un iq ue (r e s u l t s . b e g i n () , r e s u l t s . end ()) , r e s u l t s . end ()) ;
re turn r e s u l t s ;

}

Figure 1: Example of a query converted to C++

to extend the common interface’s capabilities.

4 Results
To test the performance against gdlcc against a typical Pro-
log implementation, we implemented a simple Monte Carlo
player twice, one backed by gdlcc and the other backed by
YAP [CRACS and LIACC, 2008] with some additional code
provided by Yngvi Björnsson. A Monte Carlo player ran-
domly selects an action from the current state for each player
and then performs a simulation with a random play-out pol-
icy. The reward for each player at the end of the play-out is
averaged with the current score for the action that was sam-
pled. After the move timer expires, the action with the highest
average reward is selected.

The gdlcc player was implemented with some addi-
tional options. Specifically, it could toggle transposition ta-
bles [Slate and Atkin, 1977] and memoization. Transposition
tables are a technique used in many game playing programs
to record previously visited states usually to avoid duplicate
work when searching. For example, when doing a minimax
search, transposition tables can be used to record the value of
a state so that if it is ever revisited it does not need to be re-
expanded. Here, we used transposition tables to avoid dupli-
cating state manipulation work. The transposition tables were
not implemented in the Prolog player as the Prolog player
could not record two different states in memory.

To evaluate the programs, we used four games, Tic-Tac-
Toe, Chess, Checkers and Connect4. YAP refers to the player

backed by Prolog, gdlcc was backed by gdlcc and gdlcc tt
used gdlcc with transposition tables enabled. For all games
with the exception of Tic-Tac-Toe, the gdlcc players had
memoization enabled. A maximum of 10,000 states were
stored in the transposition table for all games. We played each
game twenty times and averaged the results. As all games
we tested are two player games, the particular program being
tested played as both players in the games. The move clock
was five seconds on a 2.4GHz machine. For a single trial,
we categorized each state visited based on how far into the
play it was. That is, the first third of the states were classi-
fied as the early game, the second third as the middle game
and the final third as the end. We recorded both the number
of simulations completed and the number of states examined
in the simulations; these statistics were averaged within each
category. Our choice of using a Monte Carlo player, as op-
posed to a more sophisticated player, is due to our choice of
categorization. We wanted both players to be approximately
equal strength regardless of the number of simulations com-
pleted. If one player was much stronger than the other, then
the comparison of the number of states examined in the dif-
ferent stages of the game might not be accurate.

In Table 1 we see the number of states examined per ac-
tion by each player. The gdlcc player without transposition
tables can examine between 16.5 and 18.6 times more states
per action than the Prolog player on Tic-Tac-Toe. With the
addition of transposition tables the improvement jumps to be-
tween 23.5 and 27.1 times more states per action over the Pro-

Player Early Middle End
Tic-Tac-Toe

YAP 50935 54197 52663
gdlcc 839772 896903 980867

gdlcc tt 1197720 1324552 1426093
Chess

YAP 3240 3170 3190
gdlcc 5189 5634 5963

gdlcc tt 5091 5353 5611
Checkers

gdlcc 9853 10159 11268
gdlcc tt 9879 9888 54312

Connect4
gdlcc 65683 57376 53842

gdlcc tt 65683 64764 65683

Table 1: Stated examined over 5 seconds.

log player. In Chess the improvement is not as pronounced,
but gdlccwithout transposition tables can examine between
1.6 and 1.8 times as many states as the Prolog player. We see
that our transposition table implementation actually hurts our
performance in Chess. This could be due to a few factors.
First, the state description in Chess is much larger. Second,
the states are revisited less frequently. The combination of
these facts means that there is more overhead when using the
transposition table coupled with less gain from their use. In
Checkers and Connect4 the difference that transposition ta-
bles makes is more noticeable, especially as the game moves
towards the later stages. In the later stages of the game, there
are fewer actions for a player to choose from and fewer moves
before the game terminates. This results in many of the states
visited during the simulations being stored in the transposi-
tion table. Since the state size in these two games is smaller
than in Chess, the overhead required to access the table is rel-
atively small compared to the amount of work that is saved
by having a successful table look-up.

In Table 2 we see the number of simulations run per turn
by each player follows a similar trend to the number of states
examined per turn. In Tic-Tac-Toe we have between a 10 to
20 times speed up over the Prolog player with transposition
tables. In Chess, the three players are quite similar across
the board, again with transposition tables causing more harm
than good and with gdlcc slightly edging out the Prolog
player. Finally, in Checkers and Connect4, the transposition
tables made quiet a difference in the end game and little to no
difference towards the early game.

In summary, we see that in terms of either metric of state
manipulation speed that gdlcc does no worse than Prolog
and has the potential to do much better. This furthers the
point that even a naive implementation of a generated state
manipulation library can be beneficial in general games.

Maligne, an entrant to the 2008 General Game Playing
Competition from the University of Alberta, used gdlcc for
its state manipulation. It is a UCT player with a Monte Carlo
simulation-based evaluation function.

Player Early Middle End
Tic-Tac-Toe

YAP 7309 13212 18553
gdlcc 134932 194602 194602

gdlcc tt 164348 268363 370144
Chess

YAP 22 31 62
gdlcc 28 41 63

gdlcc tt 28 39 58
Checkers

gdlcc 108 217 1419
gdlcc tt 108 208 12961

Connect4
gdlcc 3308 4612 6881

gdlcc tt 3536 5367 8156

Table 2: Simulations over 5 seconds.

5 Future Work
There is much room to improve gdlcc even further. The
generated code is by no means optimal. In fact, most of its
speed comes from the fact that the C++ compiler can produce
very efficient machine code. When run through a profiler, we
noticed that code generated by gdlcc spent an overwhelm-
ing amount of time merely allocating and freeing memory.
This is likely because its use of STL containers. By inlining
select sub-queries and attempting to reduce or remove the de-
pendence on STL it would be possible to help alleviate some
of this unnecessary allocation and deallocation. It is possible
that the choice of when to inline might depend on information
not easily accessible to the code generation program, such as
what facts of a state are typically true. One possible way to
combat this is to generate debugging or profiling output. This
way a first draft of a player can gather and report these statis-
tics over a few plays of the game. These statistics can then be
fed back into gdlcc to make more informed decisions about
how to inline.

As mentioned earlier, the order in which the sub-queries
are evaluated can have a huge impact on the amount of work
required to resolve the unknowns. Currently, gdlcc uses a
simple heuristic to solve this problem, but a more intelligent
technique could provide huge savings. Again, using profiling
information could be useful in determining a good ordering.

Memoization can also be a huge win in certain games, but
again it is hard to tell what should be memoized and what
should be recomputed. A heuristic for choosing what to mem-
oize or using profiling information could be of great use here.
Additionally, memoization can unnecessarily use a lot of ad-
ditional memory, which can cause unneeded overhead. For
some games, it might actually be worse to memoize every-
thing than to not memoize anything at all. That is, unlike
clause reordering, getting memoization wrong can actually
decrease performance.

As alluded to earlier, gdlcc does not provide an inter-
face for players to do much interaction with the specifics of
the game. That is, attempting to construct heuristics from a
state’s description is not possible with the current interface

common to all games. Additional support for these features
would be useful for designing a strong player and certainly
are feasible to implement.

One final issue with gdlcc that would be useful to ad-
dress is that it can take quite some time to compile a player
for some larger (in terms of description size) games. For ex-
tremely large games, gdlcc can produce source files that are
megabytes in size. The speed at which gdlcc produces this
code is not an issue, but the speed at which the C++ com-
piler compiles the code can be. This is especially the case if
optimizations are set to their highest level. If one attempts
to implement some type of profiling, that would require two
compilations and some training time all within a game’s start
clock. This additional requirement could easily exceed the
start clock limits that are common currently.

6 Conclusion
We have shown that using generated code is an effective
method of increasing the rate at which a general game play-
ing program can manipulate game states. Even a naive imple-
mentation outperforms a generic Prolog package for the state
manipulation tasks. Furthermore, there are many additional
enhancements that can be made when generating state ma-
nipulation code that could improve performance. As search-
ing a larger amount of the state space is likely to increase
the strength of play, it is likely that players based on this
method would have an advantage over those who continue
to rely on a Prolog package. Unfortunately, this enhancement
is merely a band-aid in the sense that it does not move us
closer to achieving general intelligence. That is, the goal of
winning the AAAI General Game Playing Competition does
not completely coincide with the underlying research goals of
the competition.

Acknowledgements
We would like to thank the past and present members of the
University of Alberta’s General Game Playing group for help-
ful conversations and feedback on gdlcc. Special thanks to
Jonathan Schaeffer and Nathan Sturtevant for reviewing this
work. Furthermore, special thanks to Yngvi Björnsson for the
code used to convert a GDL game to Prolog and general game
specific C++ bindings to YAP.

References
[Banerjee and Stone, 2007] Bikramjit Banerjee and Peter

Stone. General game learning using knowledge transfer.
In IJCAI, pages 672–677, 2007.

[Banerjee et al., 2006] Bikramjit Banerjee, Gregory
Kuhlmann, and Peter Stone. Value function transfer
for general game playing. In ICML Workshop on
Structural Knowledge Transfer for Machine Learning,
2006.

[Clune, 2007] James Clune. Heuristic evaluation functions
for general game playing. In AAAI, pages 1134–1139.
AAAI Press, 2007.

[CRACS and LIACC, 2008] CRACS and LIACC. Yap pro-
log, 2008. http://www.dcc.fc.up.pt/˜vsc/
Yap/.

[Finnsson and Björnsson, 2008] Hilmar Finnsson and Yngvi
Björnsson. Simulation-based approach to general game
playing. In AAAI. AAAI Press, 2008.

[Finnsson, 2007] Hilmar Finnsson. Cadia-player: A general
game playing agent. Master’s thesis, Reykjavik University
– School of Computer Science, 2007.

[Genesereth et al., 2005] Michael R. Genesereth, Nathaniel
Love, and Barney Pell. General game playing: Overview
of the aaai competition. AI Magazine, 26(2):62–72, 2005.

[Kaiser, 2007] David M. Kaiser. Automatic feature extrac-
tion for autonomous general game playing agents. In AA-
MAS, pages 643–649, 2007.

[Kocsis and Szepesvári, 2006] Levente Kocsis and Csaba
Szepesvári. Bandit based monte-carlo planning. In
In: ECML-06. Number 4212 in LNCS, pages 282–293.
Springer, 2006.

[Kuhlmann and Stone, 2007] Gregory Kuhlmann and Peter
Stone. Graph-based domain mapping for transfer learning
in general games. In ECML, pages 188–200, 2007.

[Kuhlmann et al., 2006] Gregory Kuhlmann, Kurt Dresner,
and Peter Stone. Automatic heuristic construction in a
complete general game player. In AAAI, pages 1457–62,
2006.

[Love et al., 2008] Nathaniel Love, Timothy Hinrichs,
David Haley, Eric Schkufza, and Michael Genesereth.
General game playing: Game description language
specification. Technical Report March 4 2008, Stanford
University, 2008. Most recent version available at
http://games.stanford.edu/.

[Schaeffer et al., 1992] Jonathan Schaeffer, Joseph Culber-
son, Norman Treloar, Brent Knight, Paul Lu, and Duane
Szafron. A world championship caliber checkers program.
Artificial Intelligence, 53(2–3):273–290, 1992.

[Schaeffer, 1983] Jonathan Schaeffer. The history heuris-
tic. International Computer Chess Association Journal,
6(3):16–19, 1983.

[Schiffel and Thielscher, 2007a] Stephan Schiffel and
Michael Thielscher. Automatic construction of a heuristic
search function for general game playing. In IJCAI Work-
shop on Nonmontonic Reasoning, Action and Change,
2007.

[Schiffel and Thielscher, 2007b] Stephan Schiffel and
Michael Thielscher. Fluxplayer: A successful general
game player. In AAAI, pages 1191–1196. AAAI Press,
2007.

[Sharma et al., 2008] Shiven Sharma, Ziad Kobti, and
Scott D. Goodwin. Knowledge generation for improv-
ing simulations in UCT for general game playing. In
Australasian Conference on Artificial Intelligence, volume
5360, pages 49–55. Springer, 2008.

[Slate and Atkin, 1977] D. J. Slate and L. R. Atkin. Chess
Skill in Man and Machine, chapter 4.5 – The Northwest-
ern University Chess Program, pages 82–118. Springer-
Verlag, New York, 1977.

[Taylor et al., 2007] Matthew E. Taylor, Gregory Kuhlmann,
and Peter Stone. Accelerating search with transferred
heuristics. In ICAPS-07 Workshop on AI Planning and
Learning, 2007.

[Utgoff, 2001] Paul E. Utgoff. Feature construction for game
playing. In Machines that learn to play games, pages 131–
152. Nova Science Publishers, 2001.

